- Find the square with the help of the formulae:
1) 2a + 3b
Solution: (2a + 3b)2
=(2a)2 + 2.2a.3b + (3b)2
=4a2 + 12ab + 9b2
খ) x2 + 2/y2
Solution: ( x2 + 2/y2)2
= (x2)2 + 2.x2.2/y2 + (2/y2)2
= x4 + 4x2/y2 + 4/y2
3) 4y – 5x
Solution: (4y – 5x)2
= (4y)2– 2.4y.5x + (5x)2
= 16y2 – 40xy + 25x2
4) 5x2 – y
Solution: (5x2 – y)2
= (5x2)2 – 2.5x2.y + y2
= 25x4– 10x2y + y2
5) 3b – 5c – 2a
Solution: (3b – 5c- 2a)2
= {(3b – 5c) – 2a}2
= (3b – 5c)2-2.(3b – 5c).2a + (2a)2
= (3b)2 – 2.3b.5c +( 5c)2-(6b + 10c).2a + 4a2
=9b2 – 30bc + 25c2 – 12ab – 20ac + 4a2
6) ax – by – cz
Solution: (ax – by – cz)2
= {(ax – by) – cz}2
= (ax – by)2-2.(ax – by).cz + (cz)2
= (ax)2 – 2.ax.by + (by)2 – 2axcz + 2bycz + c2z2
= a2x2– 2axby + b2y2 – 2axcz + 2bycz + c2z2
7) 2a + 3x – 2y – 5z
Solution: (2a + 3x – 2y – 5z)2
= {(2a + 3x) – (2y + 5z)}2
= (2a + 3x)2-2.(2a + 3x).(2y + 5z) + (2y + 5z)2
= (2a)2 + 2.2a.3x + (3x)2 -2.(4ay + 6xy + 10az + 15xz + (2y)2 + 2.2y.5z + (5z)2
= 4a2 + 12ax + 9x2 – 8ay – 12xy – 20az – 30xz + 4y2 + 20yz + 25z2
8) 1007
Solution: (1007)2
= (1000 + 7)2
= (1000)2 + 2.1000.7 + (7)2
= 1000000 + 14000 + 49
= 1014049
2. Simplify:
1) (7p + 3q – 5r)2 – 2(7p + 3q – 5r)(8p – 4q – 5r) + (8p – 4q – 5r)2
Solution: Let, 7p + 3q – 5r = a and 8p – 4q – 5r=b
∴ Given Expression = a2 – 2.a.b + b2
= (a – b)2
= {(7p + 3q – 5r) – (8p – 4q – 5r)}2 [Substituting the values of a and b]
= (7p + 3q – 5r – 8p + 4q + 5r)2
= (7q – p)2
= (7q)2 – 2.7q.p + (p)2
= 49q2 – 14pq + p2
2) (2m + 3n – p)2 + (2m- 3n + p)2 – 2(2m + 3n – p)(2m – 3n + p)
Solution: Let, a = 2m + 3n – p and b = 2m – 3n + p
∴ Given Expression = a2 + b2 – 2.a.b = (a – b)2
= {(2m + 3n – p) – (2m – 3n + p)}2 [Substituting the values of a and b]
= (2m + 3n – p – 2m + 3n – p)2
= (6n – 2p)2
= (6n)2 – 2.6n.2p + (2p)2
= 36n2 – 24np + 4p2
3) 6.35 × 6.35 + 2 × 6.35 × 3.65 + 3.65 × 3.65
Solution: Let, a = 6.35 and b = 3.65
∴ Given Expression = a × a+ 2 × a × b + b × b = a2 + b2 + 2.a.b = (a + b)2
= (6.35 + 3.65)2 [Substituting the values of a and b] = (10)2
= 100
3. If a – b = 4 and ab = 60 , what is the value of a + b?
Solution: Given, a – b = 4 and ab = 60
We know, (a + b)2 = (a – b)2 + 4ab
Or, (a + b)2 = 42 + 4 × 60
Or, (a + b)2 = 16 + 240 [substituting the value]
Or, (a + b)2 = 256
Or, a + b = ± √256
Or, a + b = ± 16
4. If a + b = 9m and ab = 18m2 , what is the value of a – b ?
Solution: Given, a + b = 9m and ab = 18m2
We know, (a -b)2 = (a + b)2 – 4ab
= (9m)2 – 4 × 18m2 [substituting the value]
= 81m2 – 72m2
= 9m2
∴ (a-b) = ± √9m2 = ±3m
5. If x – 1/x = 4 , prove that, x4 + 1/x4 =322.
Solution: Given, x – 1/x = 4
Or, (x – 1/x)2 = 42 (square)
Or, x2 – 2.x.1/x + (1/x)2 = 16
Or, x2 – 2 + 1/x2 = 16
Or, x2 + 1/x2 = 16 + 2
Or, x2 + 1/x2 = 18
Or, (x2 + 1/x2)2 = (18)2 (Square)
Or, (x2)2 + 2.x2.1/x2 + (1/x2)2 = 324
Or, x4 + 2 + 1/x4 = 324
Or, x4 + 1/x4 = 324 – 2
Or, x4 + 1/x4 = 322 (Proved)
6. If 2x + 2/x = 3 , what is the value of x2 + 1/x2 ?
Solution: Given, 2x + 2/x = 3
Or, 2(x + 1/x) = 3
Or, x + 1/x = 3/2
Or, (x + 1/x)2 = (3/2)2
Or, x2 + 2.x.1/x + (1/x)2 = 9/4 (square)
Or, x2+ 1/x2 + 2 = 9/4
Or, x2 + 1/x2 = 9/4 – 2
Or, x2 + 1/x2 = (9 – 8)/4
Or, x2 + 1/x2 = 1/4
7. If a + 1/a = 2 , show that, a2 + 1/a2 = a4 + 1/a4
Solution: Given, a + 1/a= 2
Or, (a2 + 1)/a = 2
Or, a2 + 1 = 2a
Or, a2 – 2a + 1 =0
Or, (a – 1)2 = 0
Or, a – 1 = 0
Or, a = 1
Now,
L.H.S = a2 + 1/a2 = 12 + 1/12 = 2
R.h.s = a4 + 1/a4 =14 + 1/14 = 2
∴ L.H.S = R.H.S (Showed)
8. If a + b = √7 and a – b = √5 , prove that, 8ab(a2 + b2) = 24
Solution: Given, a + b =√7 and a – b = √5
L.H.S = 8ab(a2 + b2)
= 4ab × 2(a2 + b2)
= {(a + b)2 – (a – b)2}{(a + b)2 + (a – b)2} [Apply Corollary 5 and 6]
= {(√7)2 – (√5)2}{(√7)2 + (√5)2}
= (7 – 5)(7 + 5)
= 2 × 12
= 24
= R.H.S (Proved)
9. If a + b + c = 9 and ab + bc + ca = 31 , what is the value of a2 + b2 + c2 ?
Solution: Given, a + b + c = 9 and ab + bc + ca = 31
We know, a2 + b2 + c2 = (a + b + c)2 – 2(ab +bc + ca)
= 92 – 2 × 31 [substituting the value]
= 81 – 62
= 19
10. If a2 + b2 + c2 = 9 and ab + bc + ca = 8 , what is the value of (a + b + c)2 ?
Solution: Given, a2 + b2 + c2 = 9 এবং ab + bc + ca = 8
We know, (a + b + c)2 = a2 + b2 + c2 +2(ab + bc + ca)
= 9 + 2 × 8 [substituting the value]
= 9 + 16
= 25
11. If a + b + c = 6 and a2 + b2 + c2 = 14 , what is the value of (a – b)2 + (b – c)2 + (c – a)2 ?
Solution: Given, a + b + c = 6 and a2 + b2 + c2 = 14
Now, (a – b)2 + (b – c)2 + (c – a)2
= a2 – 2ab + b2 + b2 – 2bc + c2 + c2 – 2ca + c2
= 2a2 +2b2 + 2c2 – 2ab -2bc – 2ca
= 2(a2 + b2 + c2) – 2(ab + bc + ca)
= 2(a2 + b2 + c2) + ( a2 + b2 + c2) – (a + b + c)2 [a2 + b2 +c2 = (a + b + c)2-2(ab + bc + ca)]
= 2×14 + 14 – (6)2
= 28 + 14 – 36
= 42 – 36
= 6
12.If x = 3, y = 4 and z = 5, what is the value of 9x2 + 16y2 + 4z2 – 24xy -16yz + 12zx ?
Solution: Given, x = 3, y = 4 and z = 5
Now,
9x2 + 16y2 + 4z2 – 24xy – 16yz + 12zx
= (3x)2 + (-4y)2 + (2z)2 + 2 × 3x × (- 4y) + 2 × (- 4y) × 2z + 2 × 2z × 3x
= {3x + (- 4y) + 2z}2
= (3x – 4y + 2z)2
= (3 × 3 – 4× 4 + 2 × 5)2 [substituting the value]
= (9 – 16 + 10)2
= 32
= 9
14. Express x2 + 10x + 24 as the difference of two squares.
Solution: x2 + 10x + 24
= x2 + 2.x.5 + 52 – 1
=(x + 5)2 – 12
15. If a4 + a2b2 + b4 = 8 and a2 + ab + b2 = 4 , find the value of 1) a2 + b2, 2) ab
Solution:
(1) Given,
a4 + a2b2 + b4 = 8 … … … (i)
a2 + ab+ b2 = 4 … … … (ii)
From (1) we have, a4 + a2b2 + b4 = 8
Or, (a2)2 + 2.a2.b2 + (b2)2– a2b2 = 8
Or, (a2 +b2)2 – (ab)2 = 8
Or, (a2 + b2 + ab)(a2 + b2 – ab) = 8
Or, 4(a2 + b2 – ab) = 8
Or, a2 + b2 – ab = 8/4 = 2 … … … (iii)
Adding equation (ii) and (iii) we have,
2a2 + 2b2 = 4 + 2
Or, a2 + b2 = 6/2
Or, a2 + b2 = 3
2) Subtract equation from (ii) to (iii) we have,
2ab = 4 -2
Or, ab = 2/2
Or, ab = 1